Meshless Local Petrov-Galerkin (MLPG) Mixed Finite Difference Method for Solid Mechanics

نویسندگان

  • S. N. Atluri
  • H. T. Liu
  • Z. D. Han
چکیده

The Finite Difference Method (FDM), within the framework of the Meshless Local PetrovGalerkin (MLPG) approach, is proposed in this paper for solving solid mechanics problems. A “mixed” interpolation scheme is adopted in the present implementation: the displacements, displacement gradients, and stresses are interpolated independently using identical MLS shape functions. The system of algebraic equations for the problem is obtained by enforcing the momentum balance laws at the nodal points. The divergence of the stress tensor is established through the generalized finite difference method, using the scattered nodal values and a truncated Taylor expansion. The traction boundary conditions are imposed in the stress equations directly, using a local coordinate system. Numerical examples show that the proposed MLPG mixed finite difference method is both accurate and efficient, and stable. keyword: Meshless method, Finite difference method, MLPG

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations

A nonlinear formulation of the Meshless Local Petrov-Galerkin (MLPG) finite-volume mixed method is developed for the large deformation analysis of static and dynamic problems. In the present MLPG large deformation formulation, the velocity gradients are interpolated independently, to avoid the time consuming differentiations of the shape functions at all integration points. The nodal values of ...

متن کامل

Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method For Elasticity Problems

The Meshless Local Petrov-Galerkin (MLPG) mixed collocation method is proposed in this paper, for solving elasticity problems. In the present MLPG approach, the mixed scheme is applied to interpolate the displacements and stresses independently, as in the MLPG finite volume method. To improve the efficiency, the local weak form is established at the nodal points, for the stresses, by using the ...

متن کامل

Three dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions

In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...

متن کامل

Meshless Local Petrov-Galerkin Method for Elasto-Static Analysis of Thick-Walled Isotropic Laminated Cylinders

In this paper, one of the simplest and most regular members of the family of the Meshless Local Petrov-Galerkin (MLPG) methods; namely MLPG5, is applied to analyze the thick-walled isotropic laminated cylinders under elasto-static pressure. A novel simple technique is proposed to eliminate a very important difficulty of the meshless methods to deal with material discontinuities regarding to the...

متن کامل

Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches

(2000) Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Abstract The Meshless Local Petrov-Galerkin (MLPG) method is an effective truly meshless method for solving partial differential equations using Moving Least Squares (MLS) interpolants. It is, however, computationally expensive for some problems. A coupled MLPG/Finite Element ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006